1

Security Evaluation of DPA Countermeasures Using Dual-Rail Pre-charge Logic Style

Daisuke Suzuki

Minoru Saeki

Mitsubishi Electric Corporation, Information Technology R&D Center

MITSUBISHI ELECTRIC CORPORATION

Outline

Summary

- Motivation and results

What is Dual-Rail Pre-charge Logic Style ?

- Basic construstion of DRP logic style
- DPA countermeasure using DRP (WDDL and MDPL)

Security Evaluation of WDDL and MDPL

- Leakage caused by the difference in delay time between input signals

Experimental Results using FPGA

- Demonstrate the leakage of WDDL and MDPL gate on FPGA
- These results fully agree with our considerations

Conclusion

Summary (1/2)

How can we design secure logic circuits ?

Dual-Rail Pre-charge (DRP) Logic Style is one of the "good solutions".

Is DRP logic style secure without any constraint ?

♦ No.

✓ Need to balance loading capacitance [7][9].

 Need to balance delay time between input signals. (Our Work)

Summary (2/2)

We evaluate previously known countermeasures using DRP logic style.

LSI designers need to adjust the delay of signals.

	Loading capacitance	Delay time between input signals
WDDL[6]	Δ	Δ
MDPL[9]	Ο	Δ

What is the DRP logic style ?(1/4)

What is the DRP logic style ?(2/4)

What is the DRP logic style ?(3/4)

Wave Dynamic Differential Logic (WDDL) [6]

- The number of transitions occurring in all circuits during an operation cycle is constant without depending on the values of input signals.
- However, WDDL need extra constraints to balance the loading capacitance between two complementary wires [7][11].

What is the DRP logic style ?(4/4)

Masked Dual-Rail Pre-charge Logic (MDPL) [9]

The proposers of MDPL claim that MDPL does not need extra constraints on the place-and-route.

Security Evaluation of WDDL (1/7)

Secure case

Security Evaluation of WDDL (2/7)

Secure case

 Each of complementary logic gates consumes an equal amount of power in any time.

Security Evaluation of WDDL (3/7)

Already-known problem

 In case that there is difference in loading capacitance between two complementary wires · · ·

Security Evaluation of WDDL (4/7)

Already-known problem

 In case that there is difference in loading capacitance between two complementary wires · · ·

Security Evaluation of WDDL (5/7)

New problem

 In case that there is difference of delay time between input signals · · ·

Security Evaluation of WDDL (6/7)

New problem

 In case that there is difference of delay time between input signals ····

Security Evaluation of WDDL (7/7)

- In dual-rail circuits, the numbers of logic steps between complementary signals (e.g. a and a) are equal.
- The difference in delay time between complementary signals mainly occurs depending on the place-and-route.
- The difference in delay time between other signals (e.g. a and b) mainly occurs depending on logic formula.

Security Evaluation of MDPL (1/5)

- We analyzed the transition timing of an MDPL gate under all possible input delay conditions.
- **Example.** Phase : Evaluation phase Delay Condition : delay (m) < delay (a_m) < delay (b_m)

Security Evaluation of MDPL (2/5)

- When a = 0, the transition of q_m only occurs at the timing that a_m switches to 1.
- **Example.** Phase : Evaluation phase Delay Condition : delay (m) < delay (a_m) < delay (b_m)

Security Evaluation of MDPL (3/5)

- When a = 1, the transition of q_m only occurs at the timing that b_m switches to 1.
- **Example.** Phase : Evaluation phase Delay Condition : delay (m) < delay (a_m) < delay (b_m)

Security Evaluation of MDPL (4/5)

The leakage occurs under any delay condition !

C1: $delay(a_m) < delay(b_m) < delay(m)$

C2: $delay(a_m) < delay(m) < delay(b_m)$

C3: delay(m) < delay(a_m) < delay(b_m)

19

Security Evaluation of MDPL (5/5)

The spike polarity is fixed in each phase.

C1: $delay(a_m) < delay(b_m) < delay(m)$

C2: $delay(a_m) < delay(m) < delay(b_m)$

C3: delay(m) < delay(a_m) < delay(b_m)

20

Experimental Results on FPGA (1/7)

The model circuit used for our evaluation

Experimental Results using FPGA (2/7)

- We evaluate following two setting:
- E1: Difference in loading capacitance (Comparison between WDDL and MDPL)
 - We use a variety of constraints in the place-and-route to the circuits of WDDL and that of MDPL respectively.
 - We implement each circuit and run DPA.
 - We compare the obtained DPA traces of WDDL and MDPL.

E2: Difference in delay time between input signals (Relation between delay time and leakage)

- We insert delay elements (LUTs) into the paths of input signals of MDPL gates to satisfies the delay conditions (C1 - C3).
- We implement each circuit and run DPA.
- We compare DPA traces of MDPL obtained from E1 and E2.

Experimental Results using FPGA (3/7)

E1 : DPA traces of WDDL AND gates

Time (2.0ms/div)

250MHz sampling

Experimental Results using FPGA (4/7)

E1 : DPA traces of WDDL AND gates

Experimental Results using FPGA (5/7)

E1 : DPA traces of MDPL AND gates

Experimental Results using FPGA (6/7)

E1 : DPA traces of MDPL AND gates

Experimental Results using FPGA (7/7)

E2 : DPA traces of MDPL AND gates

Delay condition	Phase	Selection function	Leakage	Spike polarity
C1	evaluation	a	No	-
		b	No	-
	pre-charge	a	No	Ā
		b	Yes	\uparrow
C2	evaluation	a	Yes	
		b	No	V
	pre-charge	a	No	\land
		b	Yes	1
C3	evaluation	a	Yes	
		b	No	Ý
	pre-charge	a	No	-
		b	No	-

Conclusion

We evaluated previously known countermeasures using DRP logic style.

◆ LSI designers need to adjust the delay of signals.

	Loading capacitance	Delay time between input signals
WDDL[6]	Δ	Δ
MDPL[9]	Ο	Δ

CHES 2006 in Yokohama

Changes for the Better

Thanks for Listening